Coisotropic intersections

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coisotropic Intersections

In this paper we make the first steps towards developing a theory of intersections of coisotropic submanifolds, similar to that for Lagrangian submanifolds. For coisotropic submanifolds satisfying a certain stability requirement we establish persistence of coisotropic intersections under Hamiltonian diffeomorphisms, akin to the Lagrangian intersection property. To be more specific, we prove tha...

متن کامل

Gerstenhaber-batalin-vilkoviski Structures on Coisotropic Intersections

Let Y, Z be a pair of smooth coisotropic subvarieties in a smooth algebraic Poisson variety X. We show that any data of first order deformation of the structure sheaf OX to a sheaf of noncommutative algebras and of the sheaves OY and OZ to sheaves of right and left modules over the deformed algebra, respectively, gives rise to a Batalin-Vilkoviski algebra structure on the Tor-sheaf TorX q (OY ,...

متن کامل

Gerstenhaber-batalin-vilkoviski Structures on Coisotropic Intersections

Let Y, Z be a pair of smooth coisotropic subvarieties in a smooth algebraic Poisson variety X. We show that any data of first order deformation of the structure sheaf OX to a sheaf of noncommutative algebras and of the sheaves OY and OZ to sheaves of right and left modules over the deformed algebra, respectively, gives rise to a Batalin-Vilkoviski algebra structure on the Tor-sheaf TorX q (OY ,...

متن کامل

Coisotropic Representations of Reductive Groups

A symplectic action G : X of an algebraic group S on a symplectic algebraic variety X is called coisotropic if a generic orbit of this action is a coisotropic submanifold of X. In this article a classification of coisotropic symplectic linear actions G : V is given in the case where G is a reductive group.

متن کامل

Coisotropic Submanifolds and Dual Pairs

The Poisson sigma model is a widely studied two-dimensional topological field theory. This note shows that boundary conditions for the Poisson sigma model are related to coisotropic submanifolds (a result announced in [math.QA/0309180]) and that the corresponding reduced phase space is a (possibly singular) dual pair between the reduced spaces of the given two coisotropic submanifolds. In addit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Duke Mathematical Journal

سال: 2007

ISSN: 0012-7094

DOI: 10.1215/s0012-7094-07-14014-6